Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Vratislav Langer ${ }^{\text {a }}$ and Knut Lundquist ${ }^{\text {b }}$

${ }^{\text {a Department of Environmental Inorganic }}$ Chemistry, Chalmers University of Technology, SE-41296 Göteborg, Sweden, and ${ }^{\text {b }}$ Department of Forest Products and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden

Correspondence e-mail:
langer@inoc.chalmers.se

Key indicators

Single-crystal X-ray study
$T=183 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$
R factor $=0.044$
$w R$ factor $=0.124$
Data-to-parameter ratio $=25.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

erythro-2-(2,6-Dimethoxyphenoxy)-1-(3,4,5-tri-methoxyphenyl)-1,3-propanediol

In the crystals of the title lignin model compound, $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{8}$, the molecules adopt a conformation in which the bulky 2,6 dimethoxyphenoxy and 3,4,5-trimethoxyphenyl groups are distant from each other. The O (phenoxy) $-\mathrm{C}-\mathrm{C}-\mathrm{C}$ (phenyl) torsion angle between these groups is $178.58(7)^{\circ}$. The hydrogen-bonding pattern is discussed in terms of graph-set theory.

Comment

Roughly one half of the phenylpropane units in lignins are arylglycerols attached to an adjacent unit by a β-aryl ether linkage. In hardwood lignins, most of the β-aryl substituents are of the syringyl type. Formula (1) shows a structural element of the arylglycerol β-syringyl ether type. The majority of these structural elements have the erythro configuration (Bardet et al., 1998). erythro-2-(2,6-Dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)-1,3-propanediol, (2), is a model compound representative of erythro forms of lignin structures of type (1). The crystal structure of (2) is described in this paper.

(2) $R=\mathrm{CH}_{3}, R^{\prime}=\mathrm{H}$
(3) $R=\mathrm{H}, R^{\prime}=\mathrm{CH}_{2} \mathrm{OH}$

The title compound, (2), adopts a conformation in which the bulky 1-aryl and 2-aryloxy groups are distant from each other. The distance $\mathrm{C} 1 \cdots \mathrm{C} 12$ is 4.5030 (13) \AA, the torsion angle $\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 6$ is $178.58(7)^{\circ}$ and the torsion angle $\mathrm{C} 9-$ $\mathrm{C} 10-\mathrm{O} 6-\mathrm{C} 12$ is $-89.24(9)^{\circ}$. The conformation of (2) differs considerably from that of a previously examined compound of the same type, erythro-1-(4-hydroxy-3,5-dimethoxyphenyl)-2-(4-hydroxymethyl-2,6-dimethoxyphenoxy)-1,3-propanediol,
(3) (Stomberg \& Lundquist, 1989). In this latter compound, the distance corresponding to $\mathrm{C} 1 \cdots \mathrm{C} 12$ is 4.425 (7) \AA, the $\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{O} 6$ torsion angle is $-71.0(4)^{\circ}$ and the $\mathrm{C} 9-$ $\mathrm{C} 10-\mathrm{O} 6-\mathrm{C} 12$ torsion angle is $-150.5(4)^{\circ}$. The angle between the aromatic ring planes is $76.00(3)^{\circ}$ in (2) and 63.1 (1) ${ }^{\circ}$ in (3).

Received 7 November 2001 Accepted 13 November 2001 Online 24 November 2001

Figure 1
The numbering scheme for (2) with displacement ellipsoids shown at the 50% probability level. The intramolecular hydrogen bonds are shown by broken lines.

The hydrogen-bonding patterns of (2) and (3) differ considerably. Both structures exhibit intramolecular hydrogen bonds of approximately the same strength, but in (2) they are formed by $\mathrm{H}(\mathrm{O} 5)$ and both O 6 and O8 (Fig. 1 and Table 1), while in (3) they are formed by the H atom in the benzylic hydroxyl group and the O atoms corresponding to O 6 and O 8. The intermolecular hydrogen bonds also differ as a result of the fact that (3) has two more hydroxyl groups than (2) (a phenolic group and the hydroxyl group in the methylol group denoted R^{\prime}). As a consequence of this, (3) exhibits a complicated hydrogen-bonding network. Assignment of the hydrogen-bond descriptors using program PLUTO (Motherwell et al., 1999) in terms of the graph-set theory (Bernstein et al., 1995) has been carried out. For this purpose, we use symbols of type $X a, d(n)$, where X is the pattern descriptor, a is the number of acceptors, d is the number of donors and n is the number of atoms comprising the pattern. For (3), there are, on the first level, a chain $C 1,1(10)$ and rings $R 2,2(20)$ and $R 2,2(22)$ and, on the second level, chains $C 2,2(19), C 2,2(21)$ and rings $R 4,4(8), R 4,4(38), R 4,4(40)$ and $R 4,4(42)$. The structure of (2) exhibits just one first-level descriptor, a chain

Figure 2
The hydrogen-bond network showing a chain of molecules.

C1,1(6), shown in Fig. 2. Generally, the intermolecular hydrogen bonds are weaker in (2) than in (3). This is in agreement with measured melting points: $451-453 \mathrm{~K}$ for (3) and $377-378 \mathrm{~K}$ for (2). We think that the different hydrogenbonding patterns are the main reason for the conformational differences between (2) and (3).

Experimental

The synthesis of 2-(2,6-dimethoxyphenoxy)-1-(3,4,5-trimethoxy-phenyl)-1,3-propanediol has been described by von Unge et al. (1988). Separation of the diastereomeric forms was accomplished by ion exchange chromatography [cf. Li et al. (1994)]. The erythro isomer (2) was recrystallized from ethyl acetate.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{8}$
$M_{r}=394.41$
Monoclinic, $P 2_{1 / c} c$ $a=11.7627$ (2) \AA $b=9.6220(2) \AA$ $c=18.7387$ (3) \AA $\beta=103.034$ (1) ${ }^{\circ}$ $V=2066.22(6) \AA^{3}$ $Z=4$
$D_{x}=1.268 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8192 reflections
$\theta=1.8-32.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=183$ (2) K
Irregular shape, colorless
$0.65 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Siemens SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS, Sheldrick, 2001)
$T_{\text {min }}=0.939, T_{\max }=0.981$
33473 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.125$
$S=1.03$
7394 reflections
286 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0586 P)^{2}\right. \\
&+0.5426 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H4 $\cdots \mathrm{O}^{\text {i }}$	0.84	2.09	$2.8569(11)$	152
O4-H4 \cdots O6	0.84	2.56	$2.8731(10)$	104
O4-H4 \cdots O7	0.84	2.64	$3.1934(12)$	125
O5-H5 O6	0.84	2.45	$2.8504(11)$	110
O5-H5 \cdots O8	0.84	2.20	$2.9876(12)$	157
C6-H6 \cdots O4	0.95	2.40	$2.7360(12)$	101
C9-H9 \cdots O7	1.00	2.47	$3.0947(12)$	120
C11-H11A \cdots O $^{\text {ii }}$	0.99	2.58	$3.1676(14)$	118
C19-H19C $^{\text {iii }}$	0.98	2.58	$3.5465(15)$	171

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $x, \frac{3}{2}-y, z-\frac{1}{2}$.

H atoms were refined isotropically and were constrained to the ideal geometry using an appropriate riding model. For hydroxyl groups, the $\mathrm{O}-\mathrm{H}$ distances $(0.84 \AA)$ and $\mathrm{C}-\mathrm{O}-\mathrm{H}$ angles $\left(109.5^{\circ}\right)$ were kept fixed, and the torsion angle was chosen to maximize the electron density. For methyl groups, the $\mathrm{C}-\mathrm{H}$ distances $(0.98 \AA)$ and $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles $\left(109.5^{\circ}\right.$) were kept fixed, while the torsion angles were allowed to refine with the starting position based on the threefold averaged circular Fourier synthesis.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL.

References

Bardet, M., Robert, D., Lundquist, K. \& von Unge, S. (1998). Magn. Reson. Chem. 36, 597-600.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brandenburg, K. (2000). DIAMOND. Version 2.1d. Crystal Impact GbR, Bonn, Germany.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Li, S., Lundquist, K. \& Soubbotin, N. (1994). Holzforschung, 48, 509-511.
Motherwell, W. D. S., Shields, G. P. \& Allen, F. H. (1999). Acta Cryst. B55, 1044-1056.
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stomberg, R. \& Lundquist, K. (1989). J. Crystallogr. Spectrosc. Res. 19, 331339.

Unge, S. von, Lundquist, K. \& Stomberg, R. (1988). Acta Chem. Scand. Ser. B, 42, 469-474.

